Mutational analysis of N381, a key trimer contact residue in Tsr, the Escherichia coli serine chemoreceptor.
نویسندگان
چکیده
Chemoreceptors such as Tsr, the serine receptor, function in trimer-of-dimer associations to mediate chemotactic behavior in Escherichia coli. The two subunits of each receptor homodimer occupy different positions in the trimer, one at its central axis and the other at the trimer periphery. Residue N381 of Tsr contributes to trimer stability through interactions with its counterparts in a central cavity surrounded by hydrophobic residues at the trimer axis. To assess the functional role of N381, we created and characterized a full set of amino acid replacements at this Tsr residue. We found that every amino acid replacement at N381 destroyed Tsr function, and all but one (N381G) of the mutant receptors also blocked signaling by Tar, the aspartate chemoreceptor. Tar jamming reflects the formation of signaling-defective mixed trimers of dimers, and in vivo assays with a trifunctional cross-linking reagent demonstrated trimer-based interactions between Tar and Tsr-N381 mutants. Mutant Tsr molecules with a charged amino acid or proline replacement exhibited the most severe trimer formation defects. These trimer-defective receptors, as well as most of the trimer-competent mutant receptors, were unable to form ternary signaling complexes with the CheA kinase and with CheW, which couples CheA to receptor control. Some of the trimer-competent mutant receptors, particularly those with a hydrophobic amino acid replacement, may not bind CheW/CheA because they form conformationally frozen or distorted trimers. These findings indicate that trimer dynamics probably are important for ternary complex assembly and that N381 may not be a direct binding determinant for CheW/CheA at the trimer periphery.
منابع مشابه
Different signaling roles of two conserved residues in the cytoplasmic hairpin tip of Tsr, the Escherichia coli serine chemoreceptor.
Bacterial chemoreceptors form ternary signaling complexes with the histidine kinase CheA through the coupling protein CheW. Receptor complexes in turn cluster into cellular arrays that produce highly sensitive responses to chemical stimuli. In Escherichia coli, receptors of different types form mixed trimer-of-dimers signaling teams through the tips of their highly conserved cytoplasmic domains...
متن کاملConformational suppression of inter-receptor signaling defects.
Motile bacteria follow gradients of attractant and repellent chemicals with high sensitivity. Their chemoreceptors are physically clustered, which may enable them to function as a cooperative array. Although native chemoreceptor molecules are typically transmembrane homodimers, they appear to associate through their cytoplasmic tips to form trimers of dimers, which may be an important architect...
متن کاملMutational analysis of the connector segment in the HAMP domain of Tsr, the Escherichia coli serine chemoreceptor.
HAMP domains are approximately 50-residue motifs, found in many bacterial signaling proteins, that consist of two amphiphilic helices joined by a nonhelical connector segment. The HAMP domain of Tsr, the serine chemoreceptor of Escherichia coli, receives transmembrane input signals from the periplasmic serine binding domain and in turn modulates output signals from the Tsr kinase control domain...
متن کاملMutational analysis of the control cable that mediates transmembrane signaling in the Escherichia coli serine chemoreceptor.
During transmembrane signaling by Escherichia coli Tsr, changes in ligand occupancy in the periplasmic serine-binding domain promote asymmetric motions in a four-helix transmembrane bundle. Piston displacements of the signaling TM2 helix in turn modulate the HAMP bundle on the cytoplasmic side of the membrane to control receptor output signals to the flagellar motors. A five-residue control cab...
متن کاملAn unorthodox sensory adaptation site in the Escherichia coli serine chemoreceptor.
The serine chemoreceptor of Escherichia coli contains four canonical methylation sites for sensory adaptation that lie near intersubunit helix interfaces of the Tsr homodimer. An unexplored fifth methylation site, E502, lies at an intrasubunit helix interface closest to the HAMP domain that controls input-output signaling in methyl-accepting chemotaxis proteins. We analyzed, with in vivo Förste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 193 23 شماره
صفحات -
تاریخ انتشار 2011